本文共 1080 字,大约阅读时间需要 3 分钟。
在数据库性能优化中,B-树与B+树是核心数据结构,它们为数据库的查询、插入、更新和删除操作提供了高效的存储和定位机制。折半查找(Binary Search)作为B-树/B+树的查找算法,能够在对数时间内定位目标数据。
此外,数据库性能的关键因素包括磁盘IO效率和数据存储结构。传统的磁盘存储采用块/Page划分方式,数据通过链表连接,而行数据则以固定大小存放于磁盘中。
数据库的核心操作包括INSERT、UPDATE、DELETE和SELECT。这些操作的高效性直接依赖于数据定位和读写的效率。定位操作通常通过索引(Index)实现,而索引的设计至关重要。
索引的设计旨在减少磁盘IO的开销。通过将键值独立存储,并为每个键值建立指针,定位操作无需遍历所有数据块。这种方法以1/10的额外存储空间换取了定位效率的提升,定位操作的时间复杂度降低至O(1)。
Dense Index包含所有数据的键值,但其定位效率较低。Sparse Index仅存储必要的键值,通过折半块查找显著减少磁盘IO。进一步优化中,Sparse Index被改进为多层结构,以提升定位效率。
聚簇索引(Clustered Index)将数据按主键排序,数据存储与索引一致,适合主键查询。辅助索引(Secondary Index)用于非主键查询,通过Dense Index层实现快速定位。一个表最多可有一个聚簇索引,但可以拥有多个辅助索引。
基于有序键值的范围搜索,通过索引块和数据块的双向链表实现高效定位。这种方法适用于需要查询特定范围数据的场景。
B+树通过多层索引结构(如Sparse Index和Dense Index),将磁盘IO的次数降至最低。其高效的查找算法和存储结构,使得B+树成为数据库索引的核心技术。
索引的插入、删除和维护涉及分裂和合并节点操作,这些过程需遵循B+树的性质。理解B+树的实现细节对数据库性能优化至关重要。
关注公众号 MySQL代码研究,获取更多技术深度内容!
转载地址:http://bqh.baihongyu.com/